84 research outputs found

    The inner regions of protoplanetary disks

    Full text link
    To understand how planetary systems form in the dusty disks around pre-main-sequence stars a detailed knowledge of the structure and evolution of these disks is required. While this is reasonably well understood for the regions of the disk beyond about 1 AU, the structure of these disks inward of 1 AU remains a puzzle. This is partly because it is very difficult to spatially resolve these regions with current telescopes. But it is also because the physics of this region, where the disk becomes so hot that the dust starts to evaporate, is poorly understood. With infrared interferometry it has become possible in recent years to directly spatially resolve the inner AU of protoplanetary disks, albeit in a somewhat limited way. These observations have partly confirmed current models of these regions, but also posed new questions and puzzles. Moreover, it has turned out that the numerical modeling of these regions is extremely challenging. In this review we give a rough overview of the history and recent developments in this exciting field of astrophysics.Comment: 45 pages with 14 Figures. to appear in Annual Review of Astronomy and Astrophysics (2010, Vol. 48

    Current status of NLTE analysis of stellar atmospheres

    Full text link
    Various available codes for NLTE modeling and analysis of hot star spectra are reviewed. Generalizations of standard equations of kinetic equilibrium and their consequences are discussed.Comment: in Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars, E. Niemczura et al. eds., Springer, in pres

    A simplistic pedagogical formulation of a thermal speed distribution using a relativistic framework

    Full text link
    A novel pedagogical technique is presented that can be used in the undergraduate (UG) class to formulate a relativistically extended Kinetic Theory of Gases and thermal speed distribution, while assuming the basic thermal symmetry arguments of the famous Maxwell-Boltzmann distribution as presented at the UG level. The adopted framework can be used by students to understand the physics in a thermally governed system at high temperature and speeds, without having to indulge in high level tensor based mathematics, as has been done by the previous works in the subject. Our approach, a logical extension of that proposed by Maxwell, will first recapitulate what is taught and known in the UG class and then present a methodology inspired from the Maxwell-Boltzmann framework that will help students to understand and derive the physics of relativistic thermal systems. The methodology uses simple tools well known to undergraduates and involves a component of computational techniques that can be used to involve students in this exercise. We have tried to place the current work in a larger perspective in regard to the earlier works done and emphasize on it's simplicity and accessibility to students. Towards the end, interesting implications of the relativistically extended distribution are presented and compared with the Maxwell-Boltzmann results at various temperatures.Comment: 13 pages, 5 figures, Publication accepted in Pramana - Journal of Physics (Indian Academy of Sciences). Revised version has an additional section, discussing previous work on relativistic Kinetic Theory in section 2.1 and comparison with these in section 6. Arguments for formulating a relativistic thermal speed distributions have been enriched and made more clear and categorical in section

    Central Powering of the Largest Lyman-alpha Nebula is Revealed by Polarized Radiation

    Full text link
    High-redshift Lyman-alpha blobs are extended, luminous, but rare structures that appear to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to powerful radio galaxies, but the source of the luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies, suggesting an extreme starburst event or accretion onto a central black hole. Another possibility is gas that is shock excited by supernovae. However some blobs are not associated with galaxies, and may instead be heated by gas falling into a dark matter halo. The polarization of the Ly-alpha emission can in principle distinguish between these options, but a previous attempt to detect this signature returned a null detection. Here we report on the detection of polarized Ly-alpha from the blob LAB1. Although the central region shows no measurable polarization, the polarized fraction (P) increases to ~20 per cent at a radius of 45 kpc, forming an almost complete polarized ring. The detection of polarized radiation is inconsistent with the in situ production of Ly-alpha photons, and we conclude that they must have been produced in the galaxies hosted within the nebula, and re-scattered by neutral hydrogen.Comment: Published in the August 18 issue of Nature. 1750 words, 3 figures, and full Supplementary Information. Version has not undergone proofing. Reduced and processed data products are available here: http://obswww.unige.ch/people/matthew.hayes/LymanAlpha/LabPol

    Modeling Molecular-Line Emission from Circumstellar Disks

    Full text link
    Molecular lines hold valuable information on the physical and chemical composition of disks around young stars, the likely progenitors of planetary systems. This invited contribution discusses techniques to calculate the molecular emission (and absorption) line spectrum based on models for the physical and chemical structure of protoplanetary disks. Four examples of recent research illutrate these techniques in practice: matching resolved molecular-line emission from the disk around LkCa15 with theoertical models for the chemistry; evaluating the two-dimensional transfer of ultraviolet radiation into the disk, and the effect on the HCN/CN ratio; far-infrared CO line emission from a superheated disk surface layer; and inward motions in the disk around L1489 IRS.Comment: 6 pages, no figures. To appear in "The Dense Interstellar Medium in Galaxies", Procs. Fourth Cologne-Bonn-Zermatt-Symposiu

    High energy emission from microquasars

    Full text link
    The microquasar phenomenon is associated with the production of jets by X-ray binaries and, as such, may be associated with the majority of such systems. In this chapter we briefly outline the associations, definite, probable, possible, and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng and G.E. Romero (eds.), to be published by Kluwer Academic Publishers, Dordrecht, 2004. (19 pages

    Non-thermal emission processes in massive binaries

    Full text link
    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy and Astrophysics Review. Astronomy and Astrophysics Review, in pres

    Intrinsic Shapes of Elliptical Galaxies

    Full text link
    Tests for the intrinsic shape of the luminosity distribution in elliptical galaxies are discussed, with an emphasis on the uncertainties. Recent determinations of the ellipticity frequency function imply a paucity of nearly spherical galaxies, and may be inconsistent with the oblate hypothesis. Statistical tests based on the correlation of surface brightness, isophotal twisting, and minor axis rotation with ellipticity have so far not provided strong evidence in favor of the nearly oblate or nearly prolate hypothesis, but are at least qualitatively consistent with triaxiality. The possibility that the observed deviations of elliptical galaxy isophotes form ellipses are due to projection effects is evaluated. Dynamical instabilities may explain the absence of elliptical galaxies flatter than about E6, and my also play a role in the lack of nearly-spherical galaxies

    Discovery of Radio Emission from the Brown Dwarf LP944-20

    Get PDF
    Brown dwarfs are classified as objects which are not massive enough to sustain nuclear fusion of hydrogen, and are distinguished from planets by their ability to burn deuterium. Old (>10 Myr) brown dwarfs are expected to possess short-lived magnetic fields and, since they no longer generate energy from collapse and accretion, weak radio and X-ray emitting coronae. Several efforts have been undertaken in the past to detect chromospheric activity from the brown dwarf LP944-20 at X-ray and optical wavelengths, but only recently an X-ray flare from this object was detected. Here we report on the discovery of quiescent and flaring radio emission from this source, which represents the first detection of persistent radio emission from a brown dwarf, with luminosities that are several orders of magnitude larger than predicted from an empirical relation between the X-ray and radio luminosities of many stellar types. We show in the context of synchrotron emission, that LP944-20 possesses an unusually weak magnetic field in comparison to active dwarf M stars, which might explain the null results from previous optical and X-ray observations of this source, and the deviation from the empirical relations.Comment: Accepted to Natur
    • …
    corecore